Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.04.551973

ABSTRACT

SARS-CoV-2 has been proposed to encode ORF10 as the 3' terminal gene in the viral genome. However, the potential role and even existence of a functional ORF10 product has been the subject of debate. There are significant structural features in the viral genomic RNA that could, by themselves, explain the retention of the ORF10 nucleotide sequences without the need for a functional protein product. To explore this question further we made two recombinant viruses, firstly a control virus (WT) based on the genome sequence of the original Wuhan isolate and with the inclusion of the early D614G mutation in the Spike protein. We also made a second virus, identical to WT except for two additional changes that replaced the initiating ORF10 start codon and an internal methionine codon for stop codons (ORF10KO). Here we show that the two viruses have apparently identical growth kinetics in a VeroE6 cell line that over expresses TMPRSS2 (VTN cells). However, in A549 cells over expressing ACE2 and TMPRSS2 (A549-AT cells) the ORF10KO virus appears to have a small growth rate advantage. Growth competition experiments were used whereby the two viruses were mixed, passaged in either VTN or A549-AT cells and the resulting output virus was sequenced. We found that in VTN cells the WT virus quickly dominated whereas in the A549-AT cells the ORF10KO virus dominated. We then used a hamster model of SARS-CoV-2 infection and determined that the ORF10KO virus has attenuated pathogenicity (as measured by weight loss). We found an almost 10-fold reduction in viral titre in the lower respiratory tract for ORF10KO vs WT. In contrast, the WT and ORF10KO viruses had similar titres in the upper respiratory tract. Sequencing of viral RNA in the lungs of hamsters infected with ORF10KO virus revealed that this virus frequently reverts to WT. Our data suggests that the retention of a functional ORF10 sequence is highly desirable for SARS-CoV-2 infection of hamsters and affects the virus's ability to propagate in the lower respiratory tract.


Subject(s)
COVID-19 , Weight Loss
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.03.23287902

ABSTRACT

We measured brain injury markers, inflammatory mediators, and autoantibodies in 203 participants with COVID-19; 111 provided acute sera (1-11 days post admission) and 56 with COVID-19-associated neurological diagnoses provided subacute/convalescent sera (6-76 weeks post-admission). Compared to 60 controls, brain injury biomarkers (Tau, GFAP, NfL, UCH-L1) were increased in acute sera, significantly more so for NfL and UCH-L1, in patients with altered consciousness. Tau and NfL remained elevated in convalescent sera, particularly following cerebrovascular and neuroinflammatory disorders. Acutely, inflammatory mediators (including IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) were higher in participants with altered consciousness, and correlated with brain injury biomarker levels. Inflammatory mediators were lower than acute levels in convalescent sera, but levels of CCL2, CCL7, IL-1RA, IL-2R, M-CSF, SCF, IL-16 and IL-18 in individual participants correlated with Tau levels even at this late time point. When compared to acute COVID-19 patients with a normal GCS, network analysis showed significantly altered immune responses in patients with acute alteration of consciousness, and in convalescent patients who had suffered an acute neurological complication. The frequency and range of autoantibodies did not associate with neurological disorders. However, autoantibodies against specific antigens were more frequent in patients with altered consciousness in the acute phase (including MYL7, UCH-L1, GRIN3B, and DDR2), and in patients with neurological complications in the convalescent phase (including MYL7, GNRHR, and HLA antigens). In a novel low-inoculum mouse model of SARS-CoV-2, while viral replication was only consistently seen in mouse lungs, inflammatory responses were seen in both brain and lungs, with significant increases in CCL4, IFN{gamma}, IL-17A, and microglial reactivity in the brain. Neurological injury is common in the acute phase and persists late after COVID-19, and may be driven by a para-infectious process involving a dysregulated host response.


Subject(s)
COVID-19 , Brain Diseases , Cerebrovascular Disorders , Nervous System Diseases , Central Nervous System Diseases
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.03.482788

ABSTRACT

Antiviral interventions are urgently required to support vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data in support of candidate plausibility are required. The speed at which preclinical models have been developed during the pandemic are unprecedented but there is a vital need for standardisation and assessment of the Critical Quality Attributes. This work provides cross-validation for the recent report demonstrating potent antiviral activity of probenecid against SARS-CoV-2 in preclinical models (1). Vero E6 cells were pre-incubated with probenecid, across a 7-point concentration range, or control media for 2 hours before infection with SARS-CoV-2 (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020, Pango B; MOI 0.05). Probenecid or control media was then reapplied and plates incubated for 48 hours. Cells were fixed with 4% v/v paraformaldehyde, stained with crystal violet and cytopathic activity quantified by spectrophotometry at 590 nm. Syrian golden hamsters (n=5 per group) were intranasally inoculated with virus (SARS-CoV-2 Delta variant B.1.617.2; 103 PFU/hamster) for 24 hours prior to treatment. Hamsters were treated with probenecid or vehicle for 4 doses. Hamsters were ethically euthanised before quantification of total and sub-genomic pulmonary viral RNAs. No inhibition of cytopathic activity was observed for probenecid at any concentration in Vero E6 cells. Furthermore, no reduction in either total or sub-genomic RNA was observed in terminal lung samples from hamsters on day 3 (P > 0.05). Body weight of uninfected hamsters remained stable throughout the course of the experiment whereas both probenecid- (6 - 9% over 3 days) and vehicle-treated (5 - 10% over 3 days) infected hamsters lost body weight which was comparable in magnitude (P > 0.5). The presented data do not support probenecid as a SARS-CoV-2 antiviral. These data do not support use of probenecid in COVID-19 and further analysis is required prior to initiation of clinical trials to investigate the potential utility of this drug.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.26.474085

ABSTRACT

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The B.1.1.529 Omicron variant is rapidly emerging and has been designated a Variant of Concern (VOC). The variant is highly transmissible and partially or fully evades a spectrum of neutralising antibodies due to a high number of substitutions in the spike glycoprotein. A major question is the relative severity of disease caused by the Omicron variant compared with previous and currently circulating variants of SARS-CoV-2. To address this, a mouse model of infection that recapitulates severe disease in humans, K18-hACE2 mice, were infected with either a Pango B, Delta or Omicron variant of SARS-CoV-2 and their relative pathogenesis compared. In contrast to mice infected with Pango B and Delta variant viruses, those infected with the Omicron variant had less severe clinical signs (weight loss), showed recovery and had a lower virus load in both the lower and upper respiratory tract. This is also reflected by less extensive inflammatory processes in the lungs. Although T cell epitopes may be conserved, the antigenic diversity of Omicron from previous variants would suggest that a change in vaccine may be required to mitigate against the higher transmissibility and global disease burden. However, the lead time to develop such a response may be too late to mitigate the spread and effects of Omicron. These animal model data suggest the clinical consequences of infection with the Omicron variant may be less severe but the higher transmissibility could still place huge burden upon healthcare systems even if a lower proportion of infected patients are hospitalised.


Subject(s)
Infections , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.13.456266

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still adapting to its new human host. Attention has focussed on the viral spike protein, but substantial variation has been seen in the ORF8 gene. Here, we show that SARS-CoV-2 ORF8 protein undergoes signal peptide-mediated processing through the endoplasmic reticulum and is secreted as a glycosylated, disulphide-linked dimer. The secreted protein from the prototype SARS-CoV-2 virus had no major effect on viability of a variety of cell types, or on IFN or NF-{kappa}B signalling. However, it modulated cytokine expression from primary CSF1-derived human macrophages, most notably by decreasing IL-6 and IL-8 secretion. Furthermore, a sequence polymorphism L84S that appeared early in the pandemic associated with the Clade S lineage of virus, showed a markedly different effect, of increasing IL-6 production. We conclude that ORF8 sequence polymorphisms can potentially affect SARS-CoV-2 virulence and should therefore be monitored in sequencing-based surveillance.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.08.451654

ABSTRACT

Successful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention implementable alongside vaccination programmes. Camostat and nafamostat are serine protease inhibitors that inhibit SARS-CoV-2 viral entry in vitro but have not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and while camostat is orally available, both drugs have extremely short plasma half-lives. This study sought to determine whether intranasal dosing at 5 mg/kg twice daily was able to prevent airborne transmission of SARS-CoV-2 from infected to uninfected Syrian golden hamsters. SARS-CoV-2 viral RNA was above the limits of quantification in both saline- and camostat-treated hamsters 5 days after cohabitation with a SARS-CoV-2 inoculated hamster. However, intranasal nafamostat-treated hamsters remained RNA negative for the full 7 days of cohabitation. Changes in body weight over the course of the experiment were supportive of a lack of clinical symptomology in nafamostat-treated but not saline- or camostat-treated animals. These data are strongly supportive of the utility of intranasally delivered nafamostat for prevention of SARS-CoV-2 infection and further studies are underway to confirm absence of pulmonary infection and pathological changes.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Pulmonary Embolism
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.18.444622

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has triggered a worldwide health emergency. So far, several different types of vaccines have shown strong efficacy. However, both the emergence of new SARS-CoV-2 variants and the need to vaccinate a large fraction of the worlds population necessitate the development of alternative vaccines, especially those that are simple and easy to store, transport and administer. Here, we showed that ferritin-like Dps protein from hyperthermophilic Sulfolobus islandicus can be covalently coupled with different SARS-CoV-2 antigens via the SpyCatcher system, to form extremely stable and defined multivalent dodecameric vaccine nanoparticles that remain intact even after lyophilisation. Immunisation experiments in mice demonstrated that the SARS-CoV-2 receptor binding domain (RBD) coupled to Dps (RBD-S-Dps) shows particular promise as it elicited a higher antibody titre and an enhanced neutralising antibody response compared to the monomeric RBD. Furthermore, we showed that a single immunisation with the multivalent RBD-S-Dps completely protected hACE2-expressing mice from serious illness and led to efficient viral clearance from the lungs upon SARS-CoV-2 infection. Our data highlight that multimerised SARS-CoV-2 subunit vaccines are a highly efficacious modality, particularly when combined with an ultra-stable scaffold.


Subject(s)
COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.16.440173

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a primarily respiratory disease with variable clinical courses for which animal models are needed to gather insights into the pathogenesis of its causative virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in human patients. SARS-CoV-2 not only affects the respiratory tract but also the central nervous system (CNS), leading to neurological symptoms such as loss of smell and taste, headache, fatigue or severe complications like cerebrovascular diseases. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a well-known model of SARS-CoV-2 infection. In the present study, it served to investigate the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with relatively low SARS-CoV-2 doses and after prior influenza A virus infection. In K18-hACE2 mice, SARS-CoV-2 was found to frequently spread to and within the CNS during the later phase (day 7) of infection. Infection was restricted to neurons and appeared to first affect the olfactory bulb and spread from there mainly in basally orientated regions in the brain and into the spinal cord, in a dose dependent manner and independent of ACE2 expression. Neuronal infection was not associated with cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed. This was accompanied by apoptotic death of endothelial, microglial and immune cells, without evidence of viral infection of glial cells, endothelial cells and leukocytes. Taken together, microgliosis and immune cell apoptosis indicate a potential important role of microglial cells for the pathogenesis and viral effect in COVID-19 and possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates, and broadly support investigation of agents with adequate penetration into relevant regions of the CNS.


Subject(s)
Respiratory Tract Diseases , Headache , Severe Acute Respiratory Syndrome , COVID-19 , Tumor Virus Infections , Cerebrovascular Disorders , Virus Diseases , Nervous System Diseases , Nerve Degeneration , Demyelinating Diseases , Fatigue
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.30.437704

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the regional and global sequence landscapes. Several variants have been labelled as Variants of Concern (VOCs) because of perceptions or evidence that these may have a transmission advantage, increased risk of morbidly and/or mortality or immune evasion in the context of prior infection or vaccination. Placing the VOCs in context and also the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Sequences of SARS-CoV-2 in nasopharyngeal swabs from hospitalised patients in the UK were determined and virus isolated. The data indicated the virus existed as a population with a consensus level and non-synonymous changes at a minor variant. For example, viruses containing the nsp12 P323L variation from the Wuhan reference sequence, contained minor variants at the position including P and F and other amino acids. These populations were generally preserved when isolates were amplified in cell culture. In order to place VOCs B.1.1.7 (the UK Kent variant) and B.1.351 (the South African variant) in context their growth was compared to a spread of other clinical isolates. The data indicated that the growth in cell culture of the B.1.1.7 VOC was no different from other variants, suggesting that its apparent transmission advantage was not down to replicating more quickly. Growth of B.1.351 was towards the higher end of the variants. Overall, the study suggested that studying the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants.


Subject(s)
COVID-19 , Infections
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.434447

ABSTRACT

The ability of acquired immune responses against SARS-CoV-2 to protect after subsequent exposure to emerging variants of concern (VOC) such as B1.1.7 and B1.351 is currently of high significance. Here, we use a hamster model of COVID-19 to show that prior infection with a strain representative of the original circulating lineage B of SARS-CoV-2 induces protection from clinical signs upon subsequent challenge with either B1.1.7 or B1.351 viruses, which recently emerged in the UK and South Africa, respectively. The results indicate that these emergent VOC may be unlikely to cause disease in individuals that are already immune due to prior infection, and this has positive implications for overall levels of infection and COVID-19 disease.


Subject(s)
COVID-19 , Infections
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.03.433753

ABSTRACT

Introduction: SARS-CoV-2 has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgRNAs has a unique 5 sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS-junction), that can be identified using sequencing. Results: High resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS-junctions and be used as a proxy to quantify sgmRNAs for understanding virus biology. This was tested on published datasets and clinical samples from patients and longitudinal samples from animal models with COVID-19. Discussion: LeTRS identified known leader-TRS-junctions and identified novel species that were common across different species. The data indicated multi-phasic abundance of sgmRNAs in two different animal models, with spikes in sgmRNA abundance reflected in human samples, and therefore has implications for transmission models and nucleic acid-based diagnostics.


Subject(s)
COVID-19
13.
Jordan J. Clark; Rebekah Penrice-Randal; Parul Sharma; Anja Kipar; Xiaofeng Dong; Andrew D. Davidson; Maia Kavanagh Williamson; David A Matthews; Lance Turtle; Tessa Prince; Grant Hughes; Edward I Patterson; Krishanthi Subramaniam; Jo Sharp; Lynn McLaughlin; En-Min Zhou; Joseph D Turner; Amy E Marriott; Stefano Colombo; Shaun Pennington; Giancarlo Biagini; Andrew Owen; Julian Alexander Hiscox; James P Stewart; Jinghe Huang; Auke C Reidinga; Daisy Rusch; Kim CE Sigaloff; Renee A Douma; Lianne de Haan; Egill A Fridgeirsson; Niels C Gritters van de Oever; Roger JMW Rennenberg; Guido van Wingen; Marcel JH Aries; Martijn Beudel; ítalo Karmann Aventurato; Mariana Rabelo de Brito; Marina Koutsodontis Machado Alvim; José Roberto da Silva Junior; Lívia Liviane Damião; Maria Ercilia de Paula Castilho Stefano; Iêda Maria Pereira de Sousa; Elessandra Dias da Rocha; Solange Maria Gonçalves; Luiz Henrique Lopes da Silva; Vanessa Bettini; Brunno Machado de Campos; Guilherme Ludwig; Rosa Maria Mendes Viana; Ronaldo Martins; Andre S. Vieira; José Carlos Alves-Filho; Eurico de Arruda Neto; Adriano Sebollela; Fernando Cendes; Fernando Q Cunha Sr.; André Damásio; Marco Aurélio Ramirez Vinolo; Carolina Demarchi Munhoz; Stevens K Rehen Sr.; Thais Mauad; Amaro Nunes Duarte-Neto; Luiz Fernando Ferraz da Silva; Marisa Dolhnikoff; Paulo Saldiva; Alexandre Todorovic Fabro; Alessandro S Farias; Pedro Manoel M. Moraes-Vieira; José Luiz Proença Módena; Clarissa Lin Yasuda; Marcelo A. Mori; Thiago Mattar Cunha; Daniel Martins-de-Souza.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.334532

ABSTRACT

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2, a recently emerged coronavirus that has rapidly caused a pandemic. Coalescence of a second wave of this virus with seasonal respiratory viruses, particularly influenza virus is a possible global health concern. To investigate this, transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) were first infected with IAV followed by SARS-CoV-2. The host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 only. Infection of mice with each individual virus resulted in a disease phenotype compared to control mice. Although, SARS-CoV-2 RNA synthesis appeared significantly reduced in the sequentially infected mice, these mice had a more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to singly infected or control mice. The sequential infection also exacerbated the extrapulmonary manifestations associated with SARS-CoV-2. This included a more severe encephalitis. Taken together, the data suggest that the concept of "twinfection" is deleterious and mitigation steps should be instituted as part of a comprehensive public health response to the COVID-19 pandemic.


Subject(s)
Lung Diseases , Infections , Encephalitis , Weight Loss , COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.337287

ABSTRACT

Background: Anti-SARS-CoV-2 antibody tests are being increasingly used for sero-epidemiological purposes to provide better understanding of the extent of the infection in the community, and monitoring the progression of the COVID-19 epidemic. We conducted sero-prevalence study to estimate prior infection with with SARS-CoV-2 in Addis Ababa. Methods: A cross-sectional study was done from April 23 to 28, 2020 among 301 randomly selected residents of Addis Ababa; with no known history of contact with confirmed COVID-19 person. Interviews on socio demographic and behavioural risk factor followed by serological tests were performed for SARS-CoV-2 IgM, and IgG antibodies, using COVID-19 IgG/IgM Rapid Test Cassette. The test has sensitivity of 87{middle dot}9% and specificity of 100% for lgM; and a sensitivity of 97{middle dot}2% and specificity of 100% for IgG. RT-PCR test was also done on combined nasopharyngeal and oropharengeal swabs as an important public health consideration. Findings: The unadjusted antibody-based crude SARS-CoV-2 prevalence was 7{middle dot}6% and the adjusted true SARS-CoV-2 prevalence was estimated at 8{middle dot}8% (95% CI 5{middle dot}5%-11{middle dot}6%) for the study population. Higher sero-prevalence were observed for males (9.0%), age below 50 years (8.2%), students and unemployed (15.6%), those with primary education (12.1%), smokers (7.8%), alcohol consumers (8.6%), chatt-chewers (13.6%) and shish smokers (18.8%). Seroprevalence was not significantly associated neither with socio-demographic not behavioral characteristics. According to the findings, possibly more individuals had been infected in Addis Ababa than what was being detected and reported by RT-PCR test suggestive of community transmission. The use of serological test for epidemiological estimation of the extent of SARS-CoV-2 epidemic gives a more precise estimate of magnitude which would be used for further monitoring and surveillance of the magnitude of the SARS CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.308676

ABSTRACT

The recent COVID-19 pandemic has sparked a global public health crisis. Vital to the development of informed treatments for this disease is a comprehensive understanding of the molecular interactions involved in disease pathology. One lens through which we can better understand this pathology is through the network of protein-protein interactions between its viral agent, SARS-CoV-2, and its human host. For instance, increased infectivity of SARS-CoV-2 compared to SARS-CoV can be explained by rapid evolution along the interface between the Spike protein and its human receptor (ACE2) leading to increased binding affinity. Sequence divergences that modulate other protein-protein interactions may further explain differences in transmission and virulence in this novel coronavirus. To facilitate these comparisons, we combined homology-based structural modeling with the ECLAIR pipeline for interface prediction at residue resolution, and molecular docking with PyRosetta. This enabled us to compile a novel 3D structural interactome meta-analysis for the published interactome network between SARS-CoV-2 and human. This resource includes docked structures for all interactions with protein structures, enrichment analysis of variation along interfaces, predicted {Delta}{Delta}G between SARS-CoV and SARS-CoV-2 variants for each interaction, predicted impact of natural human population variation on binding affinity, and a further prioritized set of drug repurposing candidates predicted to overlap with protein interfaces. All predictions are available online for easy access and are continually updated when new interactions are published. NOTE: Some sections of this pre-print have been redacted to comply with current bioRxiv policy restricting the dissemination of purely in silico results predicting potential therapies for SARS-CoV-2 that have not undergone thorough peer-review. The results section titled 'Prioritization of Candidate Inhibitors of SARS-CoV-2-Human Interactions Through Binding Site Comparison,' Figure 4, Supplemental Table 9, and all links to our web resource have been removed. Blank headers left in place to preserve structure and item numbering. Our full manuscript will be published in an appropriate journal following peer-review.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.337774

ABSTRACT

An unexpected observation among the COVID-19 pandemic is that smokers constituted only 1.4-18.5% of hospitalized adults, calling for an urgent investigation to determine the role of smoking in SARS-CoV-2 infection. Here, we show that cigarette smoke extract (CSE) and carcinogen benzo(a)pyrene (BaP) increase ACE2 mRNA but trigger ACE2 protein catabolism. BaP induces an aryl hydrocarbon receptor (AhR)-dependent upregulation of the ubiquitin E3 ligase Skp2 for ACE2 ubiquitination. ACE2 in lung tissues of non-smokers is higher than in smokers, consistent with the findings that tobacco carcinogens downregulate ACE2 in mice. Tobacco carcinogens inhibit SARS-CoV-2 Spike protein pseudovirions infection of the cells. Given that tobacco smoke accounts for 8 million deaths including 2.1 million cancer deaths annually and Skp2 is an oncoprotein, tobacco use should not be recommended and cessation plan should be prepared for smokers in COVID-19 pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.337980

ABSTRACT

Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing pandemic, appears to facilitate rapid viral spread. The G614 variant has now replaced the D614-carrying virus as the dominant circulating strain. We report here cryo-EM structures of a full-length S trimer carrying G614, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain (RBD). A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity. The loop transition may also modulate structural rearrangements of S protein required for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.

18.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.331306

ABSTRACT

The current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions. In this work we explore how, in a context of rapid exchange of scientific information, plant biofactories can serve as a rapid and easily adaptable solution for local manufacturing of bioreagents, more specifically recombinant antibodies. For this purpose, we tested our ability to produce, in the framework of an academic lab and in a matter of weeks, milligram amounts of six different recombinant monoclonal antibodies against SARS-CoV-2 in Nicotiana benthamiana. For the design of the antibodies we took advantage, among other data sources, of the DNA sequence information made rapidly available by other groups in preprint publications. mAbs were all engineered as single-chain fragments fused to a human gamma Fc and transiently expressed using a viral vector. In parallel, we also produced the recombinant SARS-CoV-2 N protein and its Receptor Binding Domain (RBD) in planta and used them to test the binding specificity of the recombinant mAbs. Finally, for two of the antibodies we assayed a simple scale-up production protocol based on the extraction of apoplastic fluid. Our results indicate that gram amounts of anti-SARS-CoV-2 antibodies could be easily produced in little more than 6 weeks in repurposed greenhouses with little infrastructure requirements using N. benthamiana as production platform. Similar procedures could be easily deployed to produce diagnostic reagents and, eventually, could be adapted for rapid therapeutic responses.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL